
Reducing WebOS Boot Latency through
Build and Boot-Time Optimization

연세대학교스케일러블시스템 소프트웨어연구실
Scalable System Software Laboratory

1. Former Research and Limitation

3. Data Analysis & Implementation

4. Result & Conclusion

5. Further Study

Former Optimization Research

• Warm booting: a method of restarting the system through software without turning off the power

• Snapshot booting: a method that either executes only essential units or restores a previously saved

system state from a prior boot

• Replacing bootloader and flie system: a method that removes unnecessary decompression steps

and adopts a hybrid file system to accelerate kernel loading and root filesystem mounting.

6. Reference

2. Objective : Reducing Page Faults via Binary Relocation

[1] H. Jo, H. Kim, J. Jeong, J. Lee and S. Maeng, "Optimizing the startup time of embedded systems: a case study of digital TV," in

IEEE Transactions on Consumer Electronics, vol. 55, no. 4, pp. 2242-2247

팀명: BOOST
지도교수 : 정진규
2020199005 황종현 2020162029 박성현
2015147529 김창원 2020147529 임성윤

[2] K. Ho Chung, M. Sil Choi and K. Seon Ahn, "A Study on the Packaging for Fast Boot-up Time in the Embedded Linux," 13th IEEE

International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), Daegu, Korea (South),

2007, pp. 89-94

Limitation

• Hardware & Software Dependency : Optimizations rely on the underlying hardware and software stack

— such as storage device, kernel configurations, init systems, etc — making them difficult to apply

across different platforms or OS environments.

• High Development Cost : Fine tuning for each target platform requires expertise and development

time.

Page fault: occurs when the processor requests a page that is
not in physical memory, triggering disk I/O and causing
significant delays that can slow the boot process.

Linker : A linker processes ELF object and libraries, resolves
symbol references, and combines them into a single ELF
executable by arranging code and data into their final memory
segments

We compiled with --ffunction-sections to place each function in its own ELF section, then link with --
section-ordering-file (specified in our linker script) to arrange those sections in a predefined order—
determined via nm based symbol and size analysis for optimized binary layout.

Linker script and ELF: A linker script defines how ELF sections
and segments are organized—mapping them to memory
addresses and grouping them into program segments—to control
the final binary’s layout.

By defining the section order based on runtime profiling data and adding it into our linker script without
modifying original source code, we tried to lay out frequently executed functions sequentially in the final
ELF binary. This coalesced placement is intended to improve instruction cache efficiency and minimize
page faults, with the goal of reducing start up and overall execution times.

Applying to user-space applications : Since user-space memory is swappable, hot code can be grouped
in page units to minimize swap out. By organizing code in this way, the number of demand paging
events during operation can be significantly reduced, which in turn enhances memory locality and
minimizes page faults. In future work, we are planning to apply this technique to user applications like
Node.js and Chromium, using uftrace to bring ftrace-style tracing into user space.

Optimization Section Reordering Algorithm Development: In our study, we divided the code section
based on boot time usage. However, by incorporating function call relationships, we can develop a
specialized reordering algorithm that accounts for page swap and invocation frequency. This can result in
further optimized binary layouts for each user-space application tailored to its specific execution patterns.

[3] http://korea.gnu.org/manual/release/ld/ld-sjp/

Page faults & Binary Size

Conclusion

Limitation

Data Analysis

1. Collection of boot-time function traces

In Linux, since kernel memory is non-swappable, once a page fault has occurred on a page, revisiting
that page will not trigger another fault. Therefore, the exact placement of functions is not critical so
long as those which are accessed at least once are coalesced together. Thus, we only need to compile
with –section-ordering-file to define the relative order of functions.

2. Page access analysis

By enabling ftrace in the kernel boot
argument, we captured the entire sequence of
kernel function calls during the boot
process(initial kernel execution ~ systemd).
The diagram below shows our boot-time
tracing workflow. ftrace is enabled throughout
the kernel execution phase to capture each
function call’s timestamp, function name, and
caller. Once init process(systemd) is running,
the trace data is stored.

Extract Binary Info Generate Linker Script Build & Benchmark

Time stamp(s) Function Caller

Store tracing data

Bootloader Kernel execution systemd

time

Using nm, we analyzed the kernel binary to extract
each function’s address and then computed the
number of memory pages accessed based on the
location and size of each function.

We used these data to analyze memory utilization of
the code section, count of accessed pages during
booting. We found the code section to span across
5,375 pages, 964 of which were accessed during
booting. However, the functions executed during
booting only consumes 1,231,168 bytes total, which
can theoretically be compacted into 301 pages

1. Tracing kernel function

2-1. Analyze Tracing Data

3. Generate Linker Script 4. Build Kernel

2-2. Extract Binary Info

5-1. Check # of Page Faults

5-2. Check Boot Time

• Using nm, extract each
symbol’s address and size
from ELF binary

• Match each traced function
with its address and size
from the nm output to its
location in binary

• Compile with –ffunction-
sections so each function
has its own section

• Based on trace data, create
an ordering file for
functions in the .text
region.

ftrace

11.064989 update_min_vruntime update_curr

11.064989 cpuacct_charge update_curr

11.064990 __update_load_avg_se update_load_avg

11.064991 __update_load_avg_cfs_rq update_load_avg

11.064991 avg_vruntime dequeue_entity

11.064992 update_cfs_group dequeue_entity

... ... …

Overall Research Flow

Implementation

• Rebuilding the kernel with
section-ordering-file

• Verify the ELF
binary(vmlinux) has
changed.

• Gather and compare the
page related metrics.

Modest Impact in Kernel:
Since kernel memory is never swapped out in Linux, a page fault occurs only on its first access and
revisiting it does not incur additional page faults. As a result, we only apply function reordering without
page alignment, which simplifies the implementation, but offers limited reduction in page faults
throughout the system runtime.

Boot Time

For each kernel binary(vmlinux), we examined the virtual address range and pages accessed at boot time
of the code section. Lastly, we checked the on-disk sizes of both vmlinux(uncompressed) and
Image(compressed) to measure the impact of our reordering

Original Optimized Difference

Page Range
0xFFFFFFC080010~

0XFFFFFFC08150E

0XFFFFFFC080010~

0XFFFFFFC0814FE
-

Total # of Pages 5375 5359 -16 pages

Accessed # of Pages 964 322 -66.6%

Theoretical Minimum

Accessed # of Pages
301 -

Suboptimal Compaction:
We unable to achieve the ideal 301 pages because some kernel functions had stricter requirements in
their placements, leaving us with 322 pages instead of 301. However, further fine tuning may be possible.

Table 1. Comparison of Code Section Memory Page Metrics. (Total # of Page: total pages spanned by

code section, Accessed # of Pages : pages actually accessed during kernel execution, Theoretical

Minimum Accessed # of pages: smallest # of page set covering all access.

From the result, we verify that the .text section’s range is

changed. .text section still starts at the same address

(0xFFFFFFC080010), but end of address is slightly decreased

from 0xFFFFFFC08150E to 0xFFFFFFC0814FE. That is, by

reordering functions in the vmlinux, we reduced its code

section footprint from 5,375 to 5,359 pages. More importantly,

we cut the number of pages actually used at boot time by

66.6%, from 964 to 322 pages.

vmlinux

36M

Original Optimized

• vmlinux : the kernel ELF

binary size shrinks from 36 MB

to 34 MB (5.5% reduction) by

compacting code layout

• Kernel Image: the stripped

and bootable kernel image is

cut from 28 MB to 24 MB (14%

reduction)

We traced kernel code execution and wrote a custom Python parser script to generate a function
ordering file. Passing this file to the compiler and the linker, we produced an optimized ELF binary
without modifying any kernel source (only altering the build process). As a result, we reduced the number
of boot time accessed pages by 66.6%. This is especially meaningful given that kernel memory is
unswappable, so minimizing initial page access directly reduces page faults. Additionally, the reordered
layout led to a smaller final binary, which in turn reduced the size of the compressed kernel image. This
helps the bootloader load the kernel faster. When we booted the system with the optimized kernel, the
average kernel startup time reduced by 0.76%.

Figure 3. Kernel boot time comparison between original and

optimized builds. This chart compares kernel initialization

times across 30 runs for both original and optimized boot

time on kernel portion.

Figure 3 presents a comparison of kernel execution
times during boot, based on 30 trials and their
corresponding averages.
The result shows the optimized kernel achieved 0.76%
reduction in kernel execution time on average.
The measurable gain at the kernel level demonstrates
the effectiveness of function reordering in reducing
page faults.
However, as shown in Figure 2, the kernel phase
accounts for only a small fraction(6%) of the total
boot time (approximately 7s out of 1m 53s).
Therefore, these results suggest potential for further
optimization when extended to userspace
components.

Modest Impact in Overall Boot Time:
The boot time is roughly comprised of 7s (kernel) + 1m 46s (userspace). As the portion of time spent in
kernel execution is low, the performance gains in the kernel had limited impact in the overall boot time.
Nevertheless, it demonstrates the technique to be effective.

userspace
94%

kernel
6%

Boot Time Distribution:

Kernel vs. Userspace

userspace kernel

Figure 4. Boot time comparison

that kernel execution accounts for

only 6% of the total boot time,

while userspace dominates with

94%

vmlinux

34M

Image

28M

Original Optimized

Image

24M

Figure 1. Size reduction of kernel binary and

image after optimization

Figure 2. U-Boot log showing system initialization and

the SD card read speed, as highlighted in red box

A U-Boot log shows a read

speed of 23.1MB/s from the SD

card. Since the bootloader reads

data at the same speed for both

the original and optimized

images, the 4MB reduction in

Image size would result in a load

time reduction of approximately

0.173s.

	슬라이드 1

